Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Materials (Basel) ; 17(3)2024 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-38591528

RESUMEN

The restoration of endodontically treated teeth is one of the main challenges of restorative dentistry. The structure of the tooth is a complex assembly in which the materials that make it up, enamel and dentin, have very different mechanical behaviors. Therefore, finding alternative replacement materials for dental crowns in the area of restorative care isa highly significant challenge, since materials such as ceramic and zirconia have very different stress load resistance values. The aim of this study is to assess which material, either ceramic or zirconia, optimizes the behavior of a restored tooth under various typical clinical conditions and the masticatory load. A finite element analysis (FEA) framework is developed for this purpose. The 3D model of the restored tooth is input into the FEA software (Ansys Workbench R23)and meshed into tetrahedral elements. The presence of masticatory forces is considered: in particular, vertical, 45° inclined, and horizontal resultant forces of 280 N are applied on five contact points of the occlusal surface. The numerical results show that the maximum stress developed in the restored tooth including a ceramic crown and subject to axial load is about 39.381 MPa, which is rather close to the 62.32 MPa stress computed for the natural tooth; stresses of about 18 MPa are localized at the roots of both crown materials. In the case of the zirconia crown, the stresses are much higher than those in the ceramic crown, except for the 45° load direction, while, for the horizontal loads, the stress peak in the zirconia crown is almost three times as large as its counterpart in the ceramic crown (i.e., 163.24 MPa vs. 56.114 MPa, respectively). Therefore, the zirconia crown exhibits higher stresses than enamel and ceramic that could increase in the case of parafunctions, such as bruxism. The clinician's choice between the two materials should be evaluated based on the patient's medical condition.

2.
Nanomaterials (Basel) ; 12(3)2022 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-35159777

RESUMEN

Ti-6Al-4V is considered a challenging material in terms of accurate machining. Therefore, electric discharge machining (EDM) is commonly engaged, but its low cutting rate depreciates its use. This issue is resolved if graphene nanoparticles are mixed in the dielectric. However, the control over the sparking phenomenon reduces because of the dispersion of graphene particles. Subsequently, the machined profile's geometric accuracy is compromised. Furthermore, the presence of nanographene induces different sparks along axial and radial cutting orientations. This aspect has not been comprehensively examined yet and dedicatedly targeted in this study to improve the quality of EDM process for Ti-6Al-4V. A total of 18 experiments were conducted under Taguchi's L18 design considering six parameters namely, electrode type, polarity, flushing time, spark voltage, pulse time ratio, and discharge current. The aluminum electrode proved to be the best choice to reduce the errors in both the cutting orientations. Despite the other parametric settings, negative tool polarity yields lower values of axial (ADE) and radial errors (RDE). The developed optimal settings ensure 4.4- and 6.3-times reduction in RDE and ADE, respectively. In comparison to kerosene, graphene-based dielectric yields 10.2% and 19.4% reduction in RDE and ADE, respectively.

3.
Environ Sci Pollut Res Int ; 29(11): 15863-15875, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-34636008

RESUMEN

The unavailability of sunlight during nighttime and cloudy weather condition has limited the usage of solar cookers throughout the day. This study will attempt to engineer a solar cooker with PV (photovoltaic panel), evacuated tubes with CPC reflectors, battery, and charge controller using the microcontroller PIC 16F877A. A mathematical model is developed to predict the electrical power (Ep) required during cloudy weather condition and nighttime as well as the temperatures occurring at different parts of the cooker. The proposed model is validated against experimental observations gathered for one of the typical working days of the system. The cooker is tested for various cooking loads to find the cooking time, and it is proven that the proposed cooker can be utilized over 24/7 without interruption.


Asunto(s)
Energía Solar , Luz Solar , Suministros de Energía Eléctrica , Calor , Temperatura
4.
Materials (Basel) ; 14(23)2021 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-34885435

RESUMEN

The mechanical characterization of materials embraces many different aspects, such as, for example, (i) to assess materials' constitutive behavior under static and dynamic conditions; (ii) to analyze material microstructure; (iii) to assess the level of damage developed in the material; (iv) to determine surface/interfacial properties; and (v) to optimize manufacturing processes in terms of process speed and reliability and obtain the highest quality of manufactured products [...].

5.
Materials (Basel) ; 14(5)2021 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-33807624

RESUMEN

This article presents a very detailed study on the mechanical characterization of a highly nonlinear material, the immature equine zona pellucida (ZP) membrane. The ZP is modeled as a visco-hyperelastic soft matter. The Arruda-Boyce constitutive equation and the two-term Prony series are identified as the most suitable models for describing the hyperelastic and viscous components, respectively, of the ZP's mechanical response. Material properties are identified via inverse analysis based on nonlinear optimization which fits nanoindentation curves recorded at different rates. The suitability of the proposed approach is fully demonstrated by the very good agreement between AFM data and numerically reconstructed force-indentation curves. A critical comparison of mechanical behavior of two immature ZP membranes (i.e., equine and porcine ZPs) is also carried out considering the information on the structure of these materials available from electron microscopy investigations documented in the literature.

6.
Materials (Basel) ; 14(9)2021 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-33922445

RESUMEN

Materials can be considered the backbone of all technological applications [...].

7.
Materials (Basel) ; 14(3)2021 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-33494517

RESUMEN

Polycrystalline cubic boron nitride (PcBN) are super-hard materials with high hardness and excellent abrasive resistance, widely used in cutting tools for precision machining of automotive and aerospace parts; however, their brittle properties make them prone to premature failure. Coatings are often applied to PcBN to extend their range of applicability and durability. Conventional coating methods are limited to the thickness range of a few hundred nanometres, poor adhesion to the substrate, and limited stability under ambient conditions. To further the properties of PcBN composites, in this paper, we explore the use of ultrasonic bonding to apply thick coatings (30-80 µm) on PcBN cutting tools. For the first time, a multi-walled carbon nanotube (MWCNT) powder is preplaced on a PcBN substrate to allow an unconventional coating technique to take place. The effects of ultrasonic bonding parameters on the change of mechanical properties of the coated tools are investigated through scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX), micro-hardness analyses, and white light interferometry. The structure of the carbon nanotubes is investigated through transmission electron microscopy (pre coating) and cross-section of the bonded MWCNTs is studied via focused ion beam milling and SEM to evaluate the bonding between the multi-walled nanotubes. Optimum processing windows (i.e., bonding speed, energy, and pressure) are discovered for coating MWCNTs on PcBN. Focus ion beam milling analyses revealed a relationship between consolidation parameters and porosity of MW(pCNT) bonds. The proposed method paves the way for the novel design of functional coatings with attunable properties (i.e., thickness and hardness) and therefore improved productivity in the machining of aerospace and automotive parts.

8.
Nanomaterials (Basel) ; 10(10)2020 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-33066127

RESUMEN

One of the most important ideas ever produced by the application of materials science to the medical field is the notion of biomaterials. The nanostructured biomaterials play a crucial role in the development of new treatment strategies including not only the replacement of tissues and organs, but also repair and regeneration. They are designed to interact with damaged or injured tissues to induce regeneration, or as a forest for the production of laboratory tissues, so they must be micro-environmentally sensitive. The existing materials have many limitations, including impaired cell attachment, proliferation, and toxicity. Nanotechnology may open new avenues to bone tissue engineering by forming new assemblies similar in size and shape to the existing hierarchical bone structure. Organic and inorganic nanobiomaterials are increasingly used for bone tissue engineering applications because they may allow to overcome some of the current restrictions entailed by bone regeneration methods. This review covers the applications of different organic and inorganic nanobiomaterials in the field of hard tissue engineering.

9.
Materials (Basel) ; 13(8)2020 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-32316254

RESUMEN

In this study, natural deposits of Kankara kaolin clay were collected and investigated in order to determine physical, microstructural, thermal, and firing properties and assess clay's suitability as starting material for various ceramic applications. Chemical analysis of the clay was performed using XRF. Mineralogical analysis and thermal analysis of the clay were conducted using XRD and thermogravimetric thermal analysis (TGA)/differential thermal analysis (DTA), respectively. In order to assess its ceramic behavior, the clay was fired at 900-1200 °C. Maturation characteristics of fired ceramics were assessed by measuring bulk density, apparent porosity, and shrinkage. It was found that main oxides in the clay are alumina, silica, and potassium oxide, while other oxides are present in trace quantities. Kaolinite, quartz, and illite are the phases found from the XRD results, while mullite ceramic phase formed at firing temperature above 1100 °C. Maturation tests showed that ceramic properties such as bulk density and shrinkage increase with temperature, while apparent porosity decreases with temperature. The results presented in this study prove that the clay is an appropriate material for producing traditional ceramics.

10.
Materials (Basel) ; 13(1)2019 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-31877877

RESUMEN

The general goal of the study is to connect theoretical predictions of continuum mechanics with actual experimental observations that support these predictions. The representative volume element (RVE) bridges the theoretical concept of continuum with the actual discontinuous structure of matter. This paper presents an experimental verification of the RVE concept. Foundations of continuum kinematics as well as mathematical functions relating displacement vectorial fields to the recording of these fields by a light sensor in the form of gray-level scalar fields are reviewed. The Eulerian derivative field tensors are related to the deformation of the continuum: the Euler-Almansi tensor is extracted, and its properties are discussed. The compatibility between the Euler-Almansi tensor and the Cauchy stress tensor is analyzed. In order to verify the concept of the RVE, a multiscale analysis of an Al-SiC composite material is carried out. Furthermore, it is proven that the Euler-Almansi strain tensor and the Cauchy stress tensor are conjugate in the Hill-Mandel sense by solving an identification problem of the constitutive model of urethane rubber.

11.
Opt Lett ; 44(16): 3956-3959, 2019 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-31415521

RESUMEN

Optical gyroscopes measure the angular velocity using the Sagnac effect. However, the resonance splitting due to the Sagnac effect is directly proportional to the linear dimensions of the device. Consequently, integrated optical gyroscopes are still the subject of research. We propose the idea and the design of an anti-parity-time (APT)-symmetric optical gyroscope exhibiting a resonance splitting independent from the dimensions of the device. With a 80 µm×40 µm footprint integrated device, we demonstrated that it is possible to achieve a resonance splitting 106 times higher than the one obtained through the classical Sagnac effect. With respect to the previously proposed parity-time (PT)-symmetric gyroscope, our solution exhibits a real frequency splitting, directly measurable at the output power spectrum. Moreover, it can be kept at its exceptional point more accurately than the PT-symmetric counterpart. Finally, the anti-PT-symmetric gyroscope presented here can detect the sign of the angular velocity differently from the PT-symmetric one.

12.
Materials (Basel) ; 12(13)2019 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-31269761

RESUMEN

This study presents a hybrid framework for mechanical identification of materials and structures. The inverse problem is solved by combining experimental measurements performed by optical methods and non-linear optimization using metaheuristic algorithms. In particular, we develop three advanced formulations of Simulated Annealing (SA), Harmony Search (HS) and Big Bang-Big Crunch (BBBC) including enhanced approximate line search and computationally cheap gradient evaluation strategies. The rationale behind the new algorithms-denoted as Hybrid Fast Simulated Annealing (HFSA), Hybrid Fast Harmony Search (HFHS) and Hybrid Fast Big Bang-Big Crunch (HFBBBC)-is to generate high quality trial designs lying on a properly selected set of descent directions. Besides hybridizing SA/HS/BBBC metaheuristic search engines with gradient information and approximate line search, HS and BBBC are also hybridized with an enhanced 1-D probabilistic search derived from SA. The results obtained in three inverse problems regarding composite and transversely isotropic hyperelastic materials/structures with up to 17 unknown properties clearly demonstrate the validity of the proposed approach, which allows to significantly reduce the number of structural analyses with respect to previous SA/HS/BBBC formulations and improves robustness of metaheuristic search engines.

13.
Materials (Basel) ; 12(11)2019 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-31163682

RESUMEN

Macroscopic behavior of materials depends on interactions of atoms and molecules at nanometer/sub-nanometer scale. Experimental mechanics (EM) can be used for assessing relationships between the macro world and the atomic realm. Theoretical models developed at nanometric and sub-nanometric scales may be verified using EM techniques with the final goal of deriving comprehensive but manageable models. Recently, the authors have carried out studies on EM determination of displacements and their derivatives at the macro and microscopic scales. Here, these techniques were applied to the analysis of high-resolution transmission electron microscopy patterns of a crystalline array containing dislocations. Utilizing atomic positions as carriers of information and comparing undeformed and deformed configurations of observed area, displacements and their derivatives, as well as stresses, have been obtained in the Eulerian description of deformed crystal. Two approaches are introduced. The first establishes an analogy between the basic crystalline structure and a 120° strain gage rosette. The other relies on the fact that, if displacement information along three directions is available, it is possible to reconstruct the displacement field; all necessary equations are provided in the paper. Remarkably, the validity of the Cauchy-Born conjecture is proven to be correct within the range of observed deformations.

14.
Open Dent J ; 10: 610-618, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27990186

RESUMEN

Endocanalar posts are necessary to build up and retain coronal restorations but they do not reinforce dental roots. It was observed that the dislodgement of post-retained restorations commonly occurs after several years of function and long-term retention may be influenced by various factors such as temperature changes. Temperature changes, in fact, produce micrometric deformations of post and surrounding tissues/materials that may generate high stress concentrations at the interface thus leading to failure. In this study we present an optical system based on the projection moiré technique that has been utilized to monitor the displacement field of endocanalar glass-fibre posts subjected to temperature changes. Measurements were performed on forty samples and the average displacement values registered at the apical and middle region were determined for six different temperature levels. A total of 480 displacement measurements was hence performed. The values of the standard deviation computed for each of the tested temperatures over the forty samples appear reasonably small which proves the robustness and the reliability of the proposed optical technique. The possible implications for the use of the system in the applicative context were discussed.

15.
Int J Biol Sci ; 12(1): 1-17, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26722213

RESUMEN

Complexity of scaffold geometries and biological mechanisms involved in the bone generation process make the design of scaffolds a quite challenging task. The most common approaches utilized in bone tissue engineering require costly protocols and time-consuming experiments. In this study we present an algorithm that, combining parametric finite element models of scaffolds with numerical optimization methods and a computational mechano-regulation model, is able to predict the optimal scaffold microstructure. The scaffold geometrical parameters are perturbed until the best geometry that allows the largest amounts of bone to be generated, is reached. We study the effects of the following factors: (1) the shape of the pores; (2) their spatial distribution; (3) the number of pores per unit area. The optimal dimensions of the pores have been determined for different values of scaffold Young's modulus and compression loading acting on the scaffold upper surface. Pores with rectangular section were predicted to lead to the formation of larger amounts of bone compared to square section pores; similarly, elliptic pores were predicted to allow the generation of greater amounts of bone compared to circular pores. The number of pores per unit area appears to have rather negligible effects on the bone regeneration process. Finally, the algorithm predicts that for increasing loads, increasing values of the scaffold Young's modulus are preferable. The results shown in the article represent a proof-of-principle demonstration of the possibility to optimize the scaffold microstructure geometry based on mechanobiological criteria.


Asunto(s)
Biofisica/métodos , Huesos , Ingeniería de Tejidos/métodos , Andamios del Tejido , Algoritmos , Humanos , Modelos Teóricos
16.
Nanotechnology ; 26(32): 325701, 2015 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-26201503

RESUMEN

Atomic force microscopy (AFM) nanoindentation is very suited for nano- and microscale mechanical characterization of soft materials. Although the structural response of polymeric networks that form soft matter depends on viscous effects caused by the relative slippage of polymeric chains, the usual assumption made in the AFM-based characterization is that the specimen behaves as a purely elastic material and viscous forces are negligible. However, for each geometric configuration of the AFM tip, there will be a limit indentation rate above which viscous effects must be taken into account to correctly determine mechanical properties. A parametric finite element study conducted on 12 geometric configurations of a blunt cone AFM tip (overall, the study included about 200 finite element analyses) allowed us to determine the limit indentation rate for each configuration. The selected tip dimensions cover commercially available products and account for changes in tip geometry caused by serial measurements. Nanoindentation rates cover typical experimental conditions set in AFM bio-measurements on soft matter. Viscous effects appear to be more significant in the case of sharper tips. This implies that, if quantitative data on sample viscosity are not available, using a rounded indenter and carrying out experiments below the limit indentation rate will allow errors in the determination of mechanical properties to be minimized.

17.
Open Dent J ; 8: 241-50, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25614770

RESUMEN

The purpose of this study is to compare the shear bond strength of different resin bases and artificial teeth made of ceramic or acrylic resin materials and whether tooth-base interface may be treated with aluminium oxide sandblasting. Experimental measurements were carried on 80 specimens consisting of a cylinder of acrylic resin into which a single tooth is inserted. An ad hoc metallic frame was realized to measure the shear bond strength at the tooth-base interface. A complete factorial plan was designed and a three-way ANalysis Of VAriance (ANOVA) was carried out to investigate if shear bond strength is affected by the following factors: (i) tooth material (ceramic or resin); (ii) base material (self-curing or thermal-curing resin); (iii) presence or absence of aluminium oxide sandblasting treatment at the tooth-base interface. Tukey post hoc test was also conducted to evaluate any statistically significant difference between shear strength values measured for the dif-ferently prepared samples. It was found from ANOVA that the above mentioned factors all affect shear strength. Furthermore, post hoc analysis indi-cated that there are statistically significant differences (p-value=0.000) between measured shear strength values for: (i) teeth made of ceramic material vs. teeth made of acrylic resin material; (ii) bases made of self-curing resin vs. thermal-curing resin; (iii) specimens treated with aluminium oxide sandblasting vs. untreated specimens. Shear strength values measured for acryl-ic resin teeth were on average 70% higher than those measured for ceramic teeth. The shear bond strength was maximized by preparing samples with thermal-curing resin bases and resin teeth submitted to aluminium oxide sandblasting.

18.
Materials (Basel) ; 6(10): 4545-4564, 2013 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-28788347

RESUMEN

This study analyzes the mechanical behavior of low density polyethylene foam core sandwich panels subjected to edgewise compression. In order to monitor panel response to buckling, strains generated in the facesheets and overall out-of-plane deformations are measured with strain gages and projection moiré, respectively. A finite element (FE) model simulating the experimental test is developed. Numerical results are compared with moiré measurements. After having been validated against experimental evidence, the FE model is parameterized, and a trade study is carried out to investigate to what extent the structural response of the panel depends on the sandwich wall construction and facesheet/core interface defects. The projection moiré set-up utilized in this research is able to capture the sudden and very localized buckling phenomena occurring under edgewise compression of foam-based sandwich panels. Results of parametric FE analyses indicate that, if the total thickness of the sandwich wall is fixed, including thicker facesheets in the laminate yields a larger deflection of the panel that becomes more sensitive to buckling. Furthermore, the mechanical response of the foam sandwich panel is found to be rather insensitive to the level of waviness of core-facesheet interfaces.

19.
Materials (Basel) ; 6(8): 3451-3468, 2013 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-28811445

RESUMEN

The spreading use of cellular structures brings the need to speed up manufacturing processes without deteriorating mechanical properties. By using Selective Laser Melting (SLM) to produce cellular structures, the designer has total freedom in defining part geometry and manufacturing is simplified. The paper investigates the suitability of Selective Laser Melting for manufacturing steel cellular lattice structures with characteristic dimensions in the micrometer range. Alternative lattice topologies including reinforcing bars in the vertical direction also are considered. The selected lattice structure topology is shown to be superior over other lattice structure designs considered in literature. Compression tests are carried out in order to evaluate mechanical strength of lattice strut specimens made via SLM. Compressive behavior of samples also is simulated by finite element analysis and numerical results are compared with experimental data in order to assess the constitutive behavior of the lattice structure designs considered in this study. Experimental data show that it is possible to build samples of relative density in the 0.2456-0.4367 range. Compressive strength changes almost linearly with respect to relative density, which in turns depends linearly on the number of vertical reinforces. Specific strength increases with cell and strut edge size. Numerical simulations confirm the plastic nature of the instability phenomena that leads the cellular structures to collapse under compression loading.

20.
PLoS One ; 7(9): e45696, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-23049839

RESUMEN

Polyspermy is a common problem in bovine in vitro fertilization (IVF) and has a still unclear etiology. In this specie, after IVF, despite the lack of a biochemical post-fertilization hardening, the stiffness of the outer ZP layer is significantly increased. Therefore, polyspermy might be related to an incomplete or insufficient stiffening of the ZP. We obtained, by using atomic force spectroscopy in physiological conditions, a complete characterization of the biomechanical changes of the inner and outer ZP layers occurring during oocyte maturation/fertilization and correlated them to the ultrastructural changes observed by transmission electron microscopy using ruthenium red and saponin technique. In both the inner and outer ZP layers, stiffness decreased at maturation while, conversely, increased after fertilization. Contextually, at the nanoscale, during maturation both ZP layers displayed a fine filaments network whose length increased while thickness decreased. After fertilization, filaments partially recovered the immature features, appearing again shorter and thicker. Overall, the observed biomechanical modifications were substantiated by ultrastructural findings in the ZP filament mesh. In fertilized ZP, the calculated force necessary to displace ZP filaments resulted quite similar to that previously reported as generated by bovine sperm flagellum. Therefore, in bovine IVF biomechanical modifications of ZP appear ineffective in hindering sperm transit, highlighting the relevance of additional mechanisms operating in vivo.


Asunto(s)
Fertilización , Espermatozoides/patología , Zona Pelúcida/metabolismo , Animales , Fenómenos Biomecánicos , Bovinos , Citoplasma/metabolismo , Femenino , Fertilización In Vitro , Flagelos/metabolismo , Glicoproteínas/química , Masculino , Microscopía de Fuerza Atómica/métodos , Microscopía Electrónica de Transmisión/métodos , Modelos Estadísticos , Oocitos/citología , Oocitos/ultraestructura , Rojo de Rutenio/farmacología , Espermatozoides/citología , Zona Pelúcida/ultraestructura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...